It is rewritten in the counter-positive manner to prove A \notin \mathcal{RE}.
- check A is semantically closed
- (\Rightarrow) pick f \in \mathcal{F} s.t. \nexists g \subseteq f . g \in \mathcal{F} \wedge \mathsf{dom}(g) \textit{ is finite}
- (\Leftarrow) pick f \notin \mathcal{F} s.t. \exists g \subseteq f . g \in \mathcal{F} \wedge \mathsf{dom}(g) \textit{ is finite}
Some examples.
- A = \{ n | \mathsf{dom} (\varphi_n) \backslash \mathsf{ran} (\varphi_n) \neq \varnothing \}
- B = \{ n | \mathsf{dom} (\varphi_n) \text{ is finite} \}
- C = \{ n | \mathsf{dom} (\varphi_n) \text{ is infinite} \}
A \notin \mathcal{RE}. By R-S \Leftarrow, we provide g(0)=1 \in \mathcal{F}, also we scheme f(0)=1,f(1)=0, s.t. g \subseteq f \wedge f \notin \mathcal{F}, both f and g are finite (let the otherwise case undefined).
B and C are both not \mathcal{RE} (directly from R-S theorem). This says, the set of indices of all finite domain functions are not recursively enumerable. So is the set of indices of all infinite domain ones.
No comments:
Post a Comment