Processing math: 100%

Thursday, January 17, 2013

Recursion Theory

To be updated.

  • A set A \subseteq \mathbb{N} is recursive if its characteristic function is computable, noted as A \in \mathcal{R}
  • A set A \subseteq \mathbb{N} is recursively enumerable if its semi-characteristic function is computable, noted as A \in \mathcal{RE}

Example. Justify the following sets whether they belong to \mathcal{R}

  • A = \{ \mathsf{pair}(max(1000,k),n) | \varphi_n(n) \textit{ halts in } k \textit{ steps} \}
  • B = \{ \mathsf{pair}(min(1000,k),n) | \varphi_n(n) \textit{ halts in } k \textit{ steps} \}

A \in \mathcal{R}. Given an input y, n=\mathsf{proj2}(y), then \varphi_n(n) halts either within 1000 steps, or \mathsf{proj1}(y) steps, which can be computed.

B \notin \mathcal{R}. By contradiction, assume V_B is a verifier. Then We can write a verifier also for \mathsf{K} V_{\mathsf{K}} = \begin{cases} 1 & \textit{if } V_B(\mathsf{pair}(y,n))=1 \textit{ for some } 0 \leqslant y \leqslant 1000 \\ 0 & o.w. \end{cases} And \mathsf{K} \notin \mathcal{R} due to diagonalization argument. The trick lies in A and B is that A records the halting step of functions taking over 1000 steps, but B is not.

Appendix

  • \pair (n,m) = m + \frac{(n+m)(n+m+1)}{2}
  • \projl(\pair(n,m)) = n

No comments:

Post a Comment