Consider the following examples.
- \mathbf{GF}p = \mathbf{AGAF}p = \mathbf{AGF} p
- The existential quantifier is not possible in LTL. E.g., \mathbf{EF}p
- \mathbf{FG}p \neq \mathbf{AFAG}p, see Fig 1.
- \mathbf{EFG}p \neq \mathbf{FG}p \neq \mathbf{EFAG} p
- \phi \in LTL \Rightarrow \mathbf{A} \phi \in CTL*
- All CTL formulae are automatically CTL*.
It says
- They can all express some common formulae.
- Some CTL formulae are not covered in LTL.
- Some LTL formulae can not be expressed by CTL.
- Some CTL* formulae are covered neither in CTL nor LTL.
- CTL* subsumes both CTL and LTL.
No comments:
Post a Comment