Loading web-font TeX/Math/Italic

Friday, February 8, 2013

Labelled CNF Conversion and its Improvement

The CNF classical conversion is expensive although it preserves the equivalence. However, CNF labelled conversion maintains the equi-satisfiability, i.e., if the original formula is SAT, then so is the converted version.

The idea is to label a part of formula as a new variable and convert only the labelled ones, which we can derive it now.

\phi \leftrightarrow \phi [(p \wedge q) | B] \wedge CNF_{label} (B \leftrightarrow (p \wedge q))

where

\begin{align*} &CNF_{label} (B \leftrightarrow (p \wedge q)) \\ =& (\neg B \vee (p \wedge q)) \wedge (\neg (p \wedge q) \vee B) \\ =& (\neg B \vee p) \wedge (\neg B \vee q) \wedge (B \vee \neg p \vee \neg q)) \end{align*}

The same applies for disjunction, implication and double implication.

Improved version

By utilizing the results we had in last post (polarity), we can simplify the CNF_{label} procedure. For instance, if p \wedge q occurs positively, we only proceed with CNF_{label} (B \rightarrow (p \wedge q)), on negative occurrence, we instead use CNF_{label} ((p \wedge q) \rightarrow B)

An example

Convert the following using improved CNF_{label}. Credit: R. Sebastiani.

(A_1 \wedge A_2) \vee (A_3 \wedge \neg A_4) \vee (\neg A_1 \wedge \neg A_3) \vee (A_2 \wedge \neg A_4)

We start considering the whole formula as a sole variable B. And the rest conjunctions are B_1,B_2, \cdots, i.e.

\overbrace{\underbrace{(A_1 \wedge A_2)}_{B_1} \vee \underbrace{(A_3 \wedge \neg A_4)}_{B_2} \vee \underbrace{(\neg A_1 \wedge \neg A_3)}_{B_3} \vee \underbrace{(A_2 \wedge \neg A_4)}_{B_4}}^{B}

Finally, B_is all occur positively, then we only use one-side implication. i.e.

\begin{align*} &B \wedge (B \rightarrow (B_1 \vee B_2 \vee B_3 \vee B_4)) \\ & \wedge (B_1 \rightarrow (A_1 \wedge A_2)) \\ & \wedge \cdots \end{align*}

No comments:

Post a Comment