Showing posts with label limit. Show all posts
Showing posts with label limit. Show all posts

Friday, October 19, 2012

Calculating Indeterminate Limits Using Special Limits

Without using l'Hôpital's rule, one can utilize known limits. (Test MathJax $\Sigma$) \begin{align} &\lim_{x \rightarrow 0} \frac{\sin^2{2x} - e^{2x} + 1}{\ln (1+3x^2)} (\sqrt{3x+1} - \sqrt{1-x}) \\ =&\lim_{x \rightarrow 0} \frac{4x(\sin^2{2x} - e^{2x} + 1)}{(\sqrt{3x+1} + \sqrt{1-x})\ln (1+3x^2)} \\ =&\lim_{x \rightarrow 0} \frac{1}{(\sqrt{3x+1} + \sqrt{1-x})} \times \lim_{x \rightarrow 0} \frac{4x(\sin^2{2x} - e^{2x} + 1)}{\ln (1+3x^2)} \\ =&\frac{1}{2} \lim_{x \rightarrow 0} \frac{4x(\sin^2{2x} - e^{2x} + 1)}{\ln (1+3x^2)} \\ =&\lim_{x \rightarrow 0} \frac{2x(\sin^2{2x} - e^{2x} + 1)}{\ln (1+3x^2)}\\ =&\lim_{x \rightarrow 0} \frac{x(2\sin^2{2x} - 2e^{2x} + 2)}{\ln (1+3x^2)} \\ =&\lim_{x \rightarrow 0} \frac{x[-(1-2\sin^2{2x}) + 1 - 2e^{2x} + 2]}{\ln (1+3x^2)} \\ =&\lim_{x \rightarrow 0} \frac{x[(1-\cos{4x}) + 2(1 - e^{2x})]}{\ln (1+3x^2)} \\ =&\lim_{x \rightarrow 0} \frac{3x^2}{\ln (1+3x^2)} \cdot \frac{(1-\cos{4x}) + 2(1 - e^{2x})}{3x} \\ =&\lim_{x \rightarrow 0} \frac{3x^2}{\ln (1+3x^2)} \times \lim_{x \rightarrow 0} \frac{(1-\cos{4x}) + 2(1 - e^{2x})}{3x} \\ =&1 \times \lim_{x \rightarrow 0}\frac{(1-\cos{4x}) + 2(1 - e^{2x})}{3x} \\ =&\lim_{x \rightarrow 0} \frac{1-\cos{4x}}{4x}\cdot \frac{4}{3} + \lim_{x \rightarrow 0} \frac{2(1 - e^{2x})}{2x} \cdot \frac{2}{3} \\ =& \frac{4}{3} + \frac{4}{3} \\ =& \frac{8}{3} \end{align}