Showing posts with label calculus. Show all posts
Showing posts with label calculus. Show all posts

Friday, October 19, 2012

Calculating Indeterminate Limits Using Special Limits

Without using l'Hôpital's rule, one can utilize known limits. (Test MathJax $\Sigma$) \begin{align} &\lim_{x \rightarrow 0} \frac{\sin^2{2x} - e^{2x} + 1}{\ln (1+3x^2)} (\sqrt{3x+1} - \sqrt{1-x}) \\ =&\lim_{x \rightarrow 0} \frac{4x(\sin^2{2x} - e^{2x} + 1)}{(\sqrt{3x+1} + \sqrt{1-x})\ln (1+3x^2)} \\ =&\lim_{x \rightarrow 0} \frac{1}{(\sqrt{3x+1} + \sqrt{1-x})} \times \lim_{x \rightarrow 0} \frac{4x(\sin^2{2x} - e^{2x} + 1)}{\ln (1+3x^2)} \\ =&\frac{1}{2} \lim_{x \rightarrow 0} \frac{4x(\sin^2{2x} - e^{2x} + 1)}{\ln (1+3x^2)} \\ =&\lim_{x \rightarrow 0} \frac{2x(\sin^2{2x} - e^{2x} + 1)}{\ln (1+3x^2)}\\ =&\lim_{x \rightarrow 0} \frac{x(2\sin^2{2x} - 2e^{2x} + 2)}{\ln (1+3x^2)} \\ =&\lim_{x \rightarrow 0} \frac{x[-(1-2\sin^2{2x}) + 1 - 2e^{2x} + 2]}{\ln (1+3x^2)} \\ =&\lim_{x \rightarrow 0} \frac{x[(1-\cos{4x}) + 2(1 - e^{2x})]}{\ln (1+3x^2)} \\ =&\lim_{x \rightarrow 0} \frac{3x^2}{\ln (1+3x^2)} \cdot \frac{(1-\cos{4x}) + 2(1 - e^{2x})}{3x} \\ =&\lim_{x \rightarrow 0} \frac{3x^2}{\ln (1+3x^2)} \times \lim_{x \rightarrow 0} \frac{(1-\cos{4x}) + 2(1 - e^{2x})}{3x} \\ =&1 \times \lim_{x \rightarrow 0}\frac{(1-\cos{4x}) + 2(1 - e^{2x})}{3x} \\ =&\lim_{x \rightarrow 0} \frac{1-\cos{4x}}{4x}\cdot \frac{4}{3} + \lim_{x \rightarrow 0} \frac{2(1 - e^{2x})}{2x} \cdot \frac{2}{3} \\ =& \frac{4}{3} + \frac{4}{3} \\ =& \frac{8}{3} \end{align}