Showing posts with label calculus. Show all posts
Showing posts with label calculus. Show all posts
Friday, October 19, 2012
Calculating Indeterminate Limits Using Special Limits
Without using l'Hôpital's rule, one can utilize known limits.
(Test MathJax $\Sigma$)
\begin{align}
&\lim_{x \rightarrow 0} \frac{\sin^2{2x} - e^{2x} + 1}{\ln (1+3x^2)} (\sqrt{3x+1} - \sqrt{1-x}) \\
=&\lim_{x \rightarrow 0} \frac{4x(\sin^2{2x} - e^{2x} + 1)}{(\sqrt{3x+1} + \sqrt{1-x})\ln (1+3x^2)} \\
=&\lim_{x \rightarrow 0} \frac{1}{(\sqrt{3x+1} + \sqrt{1-x})} \times \lim_{x \rightarrow 0} \frac{4x(\sin^2{2x} - e^{2x} + 1)}{\ln (1+3x^2)} \\
=&\frac{1}{2} \lim_{x \rightarrow 0} \frac{4x(\sin^2{2x} - e^{2x} + 1)}{\ln (1+3x^2)} \\
=&\lim_{x \rightarrow 0} \frac{2x(\sin^2{2x} - e^{2x} + 1)}{\ln (1+3x^2)}\\
=&\lim_{x \rightarrow 0} \frac{x(2\sin^2{2x} - 2e^{2x} + 2)}{\ln (1+3x^2)} \\
=&\lim_{x \rightarrow 0} \frac{x[-(1-2\sin^2{2x}) + 1 - 2e^{2x} + 2]}{\ln (1+3x^2)} \\
=&\lim_{x \rightarrow 0} \frac{x[(1-\cos{4x}) + 2(1 - e^{2x})]}{\ln (1+3x^2)} \\
=&\lim_{x \rightarrow 0} \frac{3x^2}{\ln (1+3x^2)} \cdot \frac{(1-\cos{4x}) + 2(1 - e^{2x})}{3x} \\
=&\lim_{x \rightarrow 0} \frac{3x^2}{\ln (1+3x^2)} \times \lim_{x \rightarrow 0} \frac{(1-\cos{4x}) + 2(1 - e^{2x})}{3x} \\
=&1 \times \lim_{x \rightarrow 0}\frac{(1-\cos{4x}) + 2(1 - e^{2x})}{3x} \\
=&\lim_{x \rightarrow 0} \frac{1-\cos{4x}}{4x}\cdot \frac{4}{3} + \lim_{x \rightarrow 0} \frac{2(1 - e^{2x})}{2x} \cdot \frac{2}{3} \\
=& \frac{4}{3} + \frac{4}{3} \\
=& \frac{8}{3}
\end{align}
Subscribe to:
Comments (Atom)